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SUMMARY

Under-relaxation factors are signi�cant parameters a�ecting the convergence of a numerical scheme.
Some earlier work has been done to optimize these parameters, but this was restricted to special
�ow domains, and the range of changes for under-relaxation factors and convective algorithms are
limited.
In this paper, the e�ects of changing under-relaxation factors for di�erent variables, di�erent convec-

tive schemes and grid sizes on the convergence of the numerical solution of three 2D turbulent �ow
situations are studied. These three �ows are duct �ow, trench �ow and inclined free falling jet �ow.
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INTRODUCTION

One set of most signi�cant parameters a�ecting the convergence of a numerical scheme is
the under-relaxation factors. Some earlier work has been done to optimize these parame-
ters. However, these previous works are restricted to special �ow domains and the range of
changes for under-relaxation factors and convective algorithms are limited, e.g. References
[1; 2].
In this paper, the e�ects of changing under-relaxation factors for di�erent variables, di�erent

convective schemes and grid sizes on the convergence of the numerical solution of three 2D
turbulent �ow situations are studied. These three �ows are duct �ow, trench �ow and inclined
free falling jet �ow.
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FLOW EQUATIONS AND NUMERICAL SCHEMES

Steady, turbulent, incompressible �uid �ow is governed by equations representing conservation
of mass and linear momentum. Turbulence is modelled using the standard k –� turbulence
model with wall functions. Standard boundary conditions are used at inlets, outlets, walls and
free surfaces.
The �ow equations are integrated over each cell using a �nite-volume technique. Two

di�erent convective schemes, namely the power-law scheme (POW) and second-order upwind
scheme (SOU), are used to compute the convective �uxes. For velocity–pressure coupling, the
SIMPLE algorithm is followed. Since a non-staggered grid is used in this study, the Rhie and
Chow [3] interpolation method is used to avoid instabilities in the calculation of the velocities
and pressure.
It is necessary to limit the change in each variable between iterations (under-relaxation). It

is not possible to precisely analyse the convergence of the numerical method, so the selection
of under-relaxation factors is largely empirical [4].

TEST CASES

To determine a general range of acceptable under-relaxation factors for variables involved in
the numerical simulation of turbulent �ow, three �ows are considered.

Duct �ow (Test case T1)

Numerical simulation of the �ow domain between two walls was studied. The aspect ratio
of the physical domain was six, with a uniform inlet velocity of 5:0 m=s. Three mesh sizes,
30× 10(T1a), 45× 15(T1b) and 60× 20(T1c), (in x and y directions) were used. For dis-
cretization of the convective terms, the POW scheme was adopted.

Trench �ow (Test case T2)

Experimental results for this �ow case have been presented by van Rijn [5] and numerical
simulation was done by Basara and Younis [6]. Therefore, we are able to check the validity
of the present numerical model, using the location of the point of reattachment for validation.
The SOU scheme was applied, with an inlet velocity in x direction of 0:5m=s, and mesh size
of 130× 40.

Inclined free falling jet (Test case T3)

In this case the top boundary is a free surface, while the left and bottom boundaries are solid
walls. The incoming jet had a width of 26:67cm and impinged on the free surface at an angle
of 75◦. The POW scheme was implemented on a 60× 10 mesh.

ANALYSIS OF THE RESULTS

The under-relaxation factors for velocity (�u; �v), pressure (�p), turbulent kinetic energy (�k),
dissipation of turbulent kinetic energy (��), eddy viscosity (��) and generation term (�g)
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were systematically changed between the limits of 0.1–0.9 and the divergence or the number
of iteration (Niter) required to reach convergence was recorded in each case. The require-
ment for convergence was that the non-dimensional residuals of all variables be less than
0.0001.
Based on test cases considered for the present work and also considering previous work done

by Gopinath and Ganesan [2], it was concluded that the under-relaxation factor for velocity
components (in this work �u= �v) have the most signi�cant e�ect on the convergence rate.
Having �rst determined an optimal range for �u and �v, it is then necessary to check for the
interactions between any two other factors.

(a) E�ects of other factors on the behaviour of �u

For 0:16�p60:2 there is a smooth decrease of Niter with increase in �u and the number of
iterations at any �u decreases as �p increases from 0.1 to 0.2. For �p=0:3, the same trend
as for �p between 0.1 and 0.2 is observed, except for trench �ow and the �nest mesh size of
duct �ow. For �p¿0:4 there exist either a limited zone of smooth behaviour with a minimum
Niter that is high compared to minimum values which could be obtained by �p between 0.1
and 0.2, or there is complete divergence. Also, with �ner meshes the possibility of divergence
increases for the same value of �p above 0.2. One can choose values of �u=0:9 or, with
acceptance of a small increase of Niter, choose �u=0:8 which gives a wider range of safe �p
values (Figure 1).
For �k =0:1, both the trench and inclined jet calculations show divergence or slow conver-

gence for all �u. For �k between 0.2 and 0.4 there is no divergence in the solution. �k =0:3
gives the best convergence rate especially for larger values of �u. Large values of �k (0.8 and
greater) cause divergence for all �ow cases considered. The �k values between 0.5 and 0.8
also cause divergence in some �ow cases or for some values of �u (especially larger �u
values) and should be avoided.
The solutions are well behaved for �g=0:1 and 0.2, showing a smooth decrease of Niter

with increase of �u. For simpler �ow cases and coarser meshes, increase of �g above 0.2
causes immediate divergence. For trench �ow, divergent behaviour occurs for �g¿0:6. For
�ow of the inclined jet, divergence occurs for �g¿0:5.
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Figure 1. E�ect of �p on �u (Trench and duct �ow).

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:923–928



926 R. M. BARRON AND A. A. SALEHI NEYSHABOURI

It was found that �� values in the range of 0.1–0.2 cause complete divergence or an
oscillating trend between divergence and convergence. For the �ner mesh size of duct �ow,
this behaviour extends up to ��=0:4. Beyond these ranges for ��, convergence is obtained.
Fastest convergence occurs for ��=0:6.
It seems that values of �� have the least e�ect and, for all values of �� from 0.1 to 0.9,

we see a smooth decrease of Niter with increase of �u. However, the smaller values of ��
(between 0.1 and 0.3) give slightly better convergence speed and ��=0:3 gives the smoothest
curves in most of the �ow cases and for di�erent �u values.

(b) E�ects of other factors on �p

Increasing the value of �k in the range of 0.2–0.4 causes the range of safe values for �p to
become narrower in some �ow cases and beyond �k =0:4, divergence occurs. �g values in
the range of 0.1–0.2 do not have much e�ect on the behaviour of �p. Higher values of �g
can lead to divergence for any �p in some cases. In general, increasing the �� value above
0.4 increases the range of safe values of �p, or keeps it the same. Even though �� does not
have much e�ect on Niter when other factors are kept in their safe ranges, it does have an
e�ect on the range of acceptable �p values. As �� increases from 0.1, the extent of safe values
of �p decreases.

(c) E�ects of other factors on �k

The range of safe values of �k is reduced when the �g value is increased to 0.3 in the case
of duct �ow and to 0.4 for trench �ow (Figure 2). For �g in the recommended range of
0.1–0.2, only in the case of duct �ow with the coarsest mesh, there exists a tendency to
decrease the limit of safe values of �k by increasing the �g value from 0.1 to 0.2. Therefore,
it is preferable to choose �g=0:1. All cases indicate that increasing the �� value causes the
range of acceptable �k values to become wider. However, increasing the �� value above 0.7
causes the rate of convergence to decrease in the case of trench �ow. The only e�ect of ��
on �k is to change the range of safe �k values. Even though this e�ect is rather negligible,
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Figure 2. E�ect of �g on �k (Trench �ow).
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it seems logical to keep the value of �� small, preferably below 0.3 to have a wider range of
acceptable values of �k .

(d) E�ects of other factors on �g

Increasing the value of �� causes a slight increase in the range of acceptable �g values, but
does not signi�cantly a�ect Niter. In the case of duct �ow, values of �� in the low and
intermediate ranges do not have any signi�cant e�ect on �g. In the case of trench �ow, both
low and high values of �� cause divergence for �g values greater than 0.4. However, for the
recommended range of �g between 0.1 and 0.2, the e�ect of �� is negligible.

(e) E�ects of other factors on ��

The e�ects of �� on the behaviour of ��, except for ��=0:7 in the case of the medium size
mesh for duct �ow, is negligible. If we choose the value of �� in the range of 0.5–0.9, we
can neglect any e�ect of �� on the �� behaviour.

(f) E�ects of mesh size

Three di�erent mesh sizes have been used in the duct �ow calculations. From this limited
testing, one can observe the e�ects of mesh size on all the under-relaxation factors. In order
to accelerate convergence, as the mesh size increases, �u should be increased, �p should be
decreased and all other parameters can be kept the same provided they are already in their
range of safe values.

CONCLUSIONS

Table I illustrates the conclusions of the present work. This table shows two ranges for any
under-relaxation factor, namely the range of safe values, which are based on the non-divergent
solution, and recommended range or value, which is narrower than the safe range and results
in faster convergence. The range of safe values are applicable even when the mesh size is
increased, but increasing �u and decreasing �p increases the convergence rate.
An attempt has been made in this work to consider a wider variation of �ow cases with two

discretization schemes for the convective terms and with di�erent mesh sizes. Consequently,
this study has lead to more general conclusions about proper selection of di�erent under-
relaxation factors than any previous work.

Table I. Ranges of safe and recommended values for under-relaxation factors.

Under-relaxation factor �u; �v �p �k �g �� ��

Range of safe values 0.1–0.9 0.1–0.2 0.2–0.4 0.1–0.2 0.5–0.9 0.1–0.9
Recommended values 0.8–0.9 0.2 0.3 0.1 0.6 0.1–0.3
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