Effects of under-relaxation factors on turbulent flow simulations

R. M. Barron^{1,∗,†} and Ali A. Salehi Neyshabouri²

¹Fluid Dynamics Research Institute, University of Windsor, Windsor, Ont., Canada N9B 3P4
²Civil Engineering, University of Tarbiat Modarres, P.O. Box 14155-4838, Tehran, Iran

SUMMARY

Under-relaxation factors are significant parameters affecting the convergence of a numerical scheme. Some earlier work has been done to optimize these parameters, but this was restricted to special flow domains, and the range of changes for under-relaxation factors and convective algorithms are limited.

In this paper, the effects of changing under-relaxation factors for different variables, different convective schemes and grid sizes on the convergence of the numerical solution of three 2D turbulent flow situations are studied. These three flows are duct flow, trench flow and inclined free falling jet flow. Copyright © 2003 John Wiley & Sons, Ltd.

KEY WORDS: under-relaxation factors; duct flow; trench flow; inclined free falling jet flow

INTRODUCTION

One set of most significant parameters affecting the convergence of a numerical scheme is the under-relaxation factors. Some earlier work has been done to optimize these parameters. However, these previous works are restricted to special flow domains and the range of changes for under-relaxation factors and convective algorithms are limited, e.g. References [1, 2].

In this paper, the effects of changing under-relaxation factors for different variables, different convective schemes and grid sizes on the convergence of the numerical solution of three 2D turbulent flow situations are studied. These three flows are duct flow, trench flow and inclined free falling jet flow.

Copyright ? 2003 John Wiley & Sons, Ltd. *Revised 12 October 2002*

[∗]Correspondence to: R. M. Barron, Fluid Dynamics Research Institute, University of Windsor, 401 Sunset Avenue, Windsor, Ont., Canada N9B 3P4.

[†]E-mail: az3@uwindsor.ca

FLOW EQUATIONS AND NUMERICAL SCHEMES

Steady, turbulent, incompressible fluid flow is governed by equations representing conservation of mass and linear momentum. Turbulence is modelled using the standard $k - \varepsilon$ turbulence model with wall functions. Standard boundary conditions are used at inlets, outlets, walls and free surfaces.

The flow equations are integrated over each cell using a finite-volume technique. Two different convective schemes, namely the power-law scheme (POW) and second-order upwind scheme (SOU), are used to compute the convective fluxes. For velocity–pressure coupling, the SIMPLE algorithm is followed. Since a non-staggered grid is used in this study, the Rhie and Chow [3] interpolation method is used to avoid instabilities in the calculation of the velocities and pressure.

It is necessary to limit the change in each variable between iterations (under-relaxation). It is not possible to precisely analyse the convergence of the numerical method, so the selection of under-relaxation factors is largely empirical [4].

TEST CASES

To determine a general range of acceptable under-relaxation factors for variables involved in the numerical simulation of turbulent flow, three flows are considered.

Duct flow (*Test case T1*)

Numerical simulation of the flow domain between two walls was studied. The aspect ratio of the physical domain was six, with a uniform inlet velocity of 5.0 m/s . Three mesh sizes, $30 \times 10(T1a)$, $45 \times 15(T1b)$ and $60 \times 20(T1c)$, (in x and y directions) were used. For discretization of the convective terms, the POW scheme was adopted.

Trench flow (Test case T2)

Experimental results for this flow case have been presented by van $Rijn [5]$ and numerical simulation was done by Basara and Younis [6]. Therefore, we are able to check the validity of the present numerical model, using the location of the point of reattachment for validation. The SOU scheme was applied, with an inlet velocity in x direction of 0.5 m/s , and mesh size of 130×40 .

Inclined free falling jet (*Test case T3*)

In this case the top boundary is a free surface, while the left and bottom boundaries are solid walls. The incoming jet had a width of 26.67cm and impinged on the free surface at an angle of 75°. The POW scheme was implemented on a 60×10 mesh.

ANALYSIS OF THE RESULTS

The under-relaxation factors for velocity (α_u, α_v) , pressure (α_p) , turbulent kinetic energy (α_k) , dissipation of turbulent kinetic energy (α_k) eddy viscosity (α_k) and generation term (α_k) dissipation of turbulent kinetic energy (α_e) , eddy viscosity (α_v) and generation term (α_g)

were systematically changed between the limits of 0.1–0.9 and the divergence or the number of iteration (Niter) required to reach convergence was recorded in each case. The requirement for convergence was that the non-dimensional residuals of all variables be less than 0.0001.

Based on test cases considered for the present work and also considering previous work done by Gopinath and Ganesan [2], it was concluded that the under-relaxation factor for velocity components (in this work $\alpha_u = \alpha_v$) have the most significant effect on the convergence rate.
Having first determined an optimal range for α and α it is then necessary to check for the Having first determined an optimal range for α_u and α_v , it is then necessary to check for the interactions between any two other factors interactions between any two other factors.

(*a*) *Effects of other factors on the behaviour of* α_u

For $0.1 \le \alpha_p \le 0.2$ there is a smooth decrease of Niter with increase in α_u and the number of iterations at any α decreases as α increases from 0.1 to 0.2. For $\alpha_v = 0.3$ the same trend iterations at any α_u decreases as α_p increases from 0.1 to 0.2. For $\alpha_p = 0.3$, the same trend
as for α between 0.1 and 0.2 is observed except for trench flow and the finest mesh size of as for α_p between 0.1 and 0.2 is observed, except for trench flow and the finest mesh size of duct flow For $\alpha > 0.4$ there exist either a limited zone of smooth behaviour with a minimum duct flow. For $\alpha_p \ge 0.4$ there exist either a limited zone of smooth behaviour with a minimum
Niter that is high compared to minimum values which could be obtained by α between 0.1 Niter that is high compared to minimum values which could be obtained by α_p between 0.1 and 0.2 or there is complete divergence. Also, with finer meshes the possibility of divergence and 0.2, or there is complete divergence. Also, with finer meshes the possibility of divergence increases for the same value of α_p above 0.2. One can choose values of $\alpha_u = 0.9$ or, with accentance of a small increase of Niter choose $\alpha_v = 0.8$ which gives a wider range of safe α_v acceptance of a small increase of Niter, choose $\alpha_u = 0.8$ which gives a wider range of safe α values (Figure 1) p values (Figure 1).

For $\alpha_k = 0.1$, both the trench and inclined jet calculations show divergence or slow conver-
nce for all α . For α , between 0.2 and 0.4 there is no divergence in the solution $\alpha_l = 0.3$ gence for all α_u . For α_k between 0.2 and 0.4 there is no divergence in the solution. $\alpha_k = 0.3$
gives the best convergence rate especially for larger values of α . Large values of α_i (0.8 and gives the best convergence rate especially for larger values of α_{μ} . Large values of α_{k} (0.8 and 0.8 or atter) cause divergence for all flow cases considered. The α_{k} values between 0.5 and 0.8 greater) cause divergence for all flow cases considered. The α_k values between 0.5 and 0.8
also cause divergence in some flow cases or for some values of α (especially larger α) also cause divergence in some flow cases or for some values of α_u (especially larger α_u values) and should be avoided values) and should be avoided.

The solutions are well behaved for $\alpha_g = 0.1$ and 0.2, showing a smooth decrease of Niter
th increase of α . For simpler flow cases and coarser meshes, increase of α , above 0.2 with increase of α_u . For simpler flow cases and coarser meshes, increase of α_g above 0.2
causes immediate divergence. For trench flow, divergent behaviour occurs for $\alpha \ge 0.6$. For causes immediate divergence. For trench flow, divergent behaviour occurs for $\alpha_g \ge 0.6$. For flow of the inclined jet divergence occurs for $\alpha > 0.5$ flow of the inclined jet, divergence occurs for $\alpha_g \ge 0.5$.

Figure 1. Effect of α_p on α_u (Trench and duct flow).

Copyright ? 2003 John Wiley & Sons, Ltd. *Int. J. Numer. Meth. Fluids* 2003; 42:923–928

It was found that α_{ε} values in the range of 0.1–0.2 cause complete divergence or an eillating trend between divergence and convergence. For the finer mesh size of duct flow oscillating trend between divergence and convergence. For the finer mesh size of duct flow, this behaviour extends up to $\alpha_{\varepsilon} = 0.4$. Beyond these ranges for α_{ε} , convergence is obtained.
Eastest convergence occurs for $\alpha = 0.6$ Fastest convergence occurs for $\alpha_e = 0.6$.
It seems that values of α_e have the

It seems that values of α_v have the least effect and, for all values of α_v from 0.1 to 0.9,
rector a smooth decrease of Niter with increase of α_v . However, the smaller values of α_v we see a smooth decrease of Niter with increase of α_u . However, the smaller values of α
(between 0.1 and 0.3) give slightly better convergence speed and $\alpha = 0.3$ gives the smoothes (between 0.1 and 0.3) give slightly better convergence speed and $\alpha_v = 0.3$ gives the smoothest curves in most of the flow cases and for different α values curves in most of the flow cases and for different α_u values.

(*b*) *Effects of other factors on* α p

Increasing the value of α_k in the range of 0.2–0.4 causes the range of safe values for α_p to become narrower in some flow cases and beyond $\alpha_k = 0.4$ divergence occurs α_s values in become narrower in some flow cases and beyond $\alpha_k = 0.4$, divergence occurs. α_g values in the range of 0.1–0.2 do not have much effect on the behaviour of α_s . Higher values of α_s the range of 0.1–0.2 do not have much effect on the behaviour of α_p . Higher values of α
can lead to divergence for any α , in some cases. In general, increasing the α , value above can lead to divergence for any α_p in some cases. In general, increasing the α_e value above 0.4 increases the range of safe values of α_e or keens it the same. Even though α_e does not 0.4 increases the range of safe values of α_p , or keeps it the same. Even though α_v does not have much effect on Niter when other factors are kent in their safe ranges it does have an have much effect on Niter when other factors are kept in their safe ranges, it does have an effect on the range of acceptable α_p values. As α_v increases from 0.1, the extent of safe values of α decreases of α_p decreases.

(*c*) *Effects of other factors on* α

The range of safe values of α_k is reduced when the α_g value is increased to 0.3 in the case
of duct flow and to 0.4 for trench flow (Figure 2). For α in the recommended range of of duct flow and to 0.4 for trench flow (Figure 2). For α_g in the recommended range of 0.1–0.2 only in the case of duct flow with the coarsest mesh, there exists a tendency to $0.1-0.2$, only in the case of duct flow with the coarsest mesh, there exists a tendency to decrease the limit of safe values of α_k by increasing the α_g value from 0.1 to 0.2. Therefore, it is preferable to choose $\alpha_k = 0.1$ All cases indicate that increasing the α_k value causes the it is preferable to choose $\alpha_g = 0.1$. All cases indicate that increasing the α_e value causes the range of acceptable α_v values to become wider. However, increasing the α_v value above 0.7 range of acceptable α_k values to become wider. However, increasing the α_ε value above 0.7 causes the rate of convergence to decrease in the case of trench flow. The only effect of α . causes the rate of convergence to decrease in the case of trench flow. The only effect of α
on α_i is to change the range of safe α_i values. Even though this effect is rather negligible on α_k is to change the range of safe α_k values. Even though this effect is rather negligible,

Figure 2. Effect of α_g on α_k (Trench flow).

Copyright ? 2003 John Wiley & Sons, Ltd. *Int. J. Numer. Meth. Fluids* 2003; 42:923–928

it seems logical to keep the value of α_v small, preferably below 0.3 to have a wider range of accentable values of α_v acceptable values of α_k .

(*d*) Effects of other factors on α_g

Increasing the value of α_{ε} causes a slight increase in the range of acceptable α_{g} values, but
does not significantly affect Niter. In the case of duct flow, values of α in the low and does not significantly affect Niter. In the case of duct flow, values of α_v in the low and
intermediate ranges do not have any significant effect on α . In the case of trench flow, both intermediate ranges do not have any significant effect on α_g . In the case of trench flow, both low and high values of α cause divergence for α values greater than 0.4. However, for the low and high values of α_v cause divergence for α_g values greater than 0.4. However, for the recommended range of α_v between 0.1 and 0.2 the effect of α_v is negligible recommended range of α_g between 0.1 and 0.2, the effect of α_v is negligible.

(*e*) *Effects of other factors on* α

The effects of α_v on the behaviour of α_{ε} , except for $\alpha_v = 0.7$ in the case of the medium size mesh for duct flow is negligible. If we choose the value of α in the range of 0.5–0.9 we mesh for duct flow, is negligible. If we choose the value of α_{ε} in the range of 0.5–0.9, we can neglect any effect of α on the α behaviour can neglect any effect of α_v on the α_{ε} behaviour.

(*f*) *Effects of mesh size*

Three different mesh sizes have been used in the duct flow calculations. From this limited testing, one can observe the effects of mesh size on all the under-relaxation factors. In order to accelerate convergence, as the mesh size increases, α_u should be increased, α_p should be decreased and all other parameters can be kept the same provided they are already in their decreased and all other parameters can be kept the same provided they are already in their range of safe values.

CONCLUSIONS

Table I illustrates the conclusions of the present work. This table shows two ranges for any under-relaxation factor, namely the range of safe values, which are based on the non-divergent solution, and recommended range or value, which is narrower than the safe range and results in faster convergence. The range of safe values are applicable even when the mesh size is increased, but increasing α_u and decreasing α_p increases the convergence rate.
An attempt has been made in this work to consider a wider variation of flow

An attempt has been made in this work to consider a wider variation of flow cases with two discretization schemes for the convective terms and with different mesh sizes. Consequently, this study has lead to more general conclusions about proper selection of different underrelaxation factors than any previous work.

Table I. Ranges of safe and recommended values for under-relaxation factors.

Under-relaxation factor	α_{u}, α_{v}	α_{n}	α_k	α_a	$\alpha_{\rm s}$	α_{v}
Range of safe values Recommended values	$0.1 - 0.9$ $0.8 - 0.9$	$0.1 - 0.2$	$0.2 - 0.4$	$0.1 - 0.2$	$0.5 - 0.9$ 0.6°	$0.1 - 0.9$ $0.1 - 0.3$

Copyright ? 2003 John Wiley & Sons, Ltd. *Int. J. Numer. Meth. Fluids* 2003; 42:923–928

REFERENCES

- 1. Peric M, Kessler R, Scheuerer G. Comparison of nite volume numerical methods with staggered and collocated grids. *Computers and Fluids* 1988; 6(4):389 – 403.
- 2. Gopinath R, Ganesan V. Orthogonal arrays: An introduction and their application in optimizing under-relaxation factors in 'SIMPLE'-based algorithm. *International Journal for Numerical Methods in Fluids* 1992; 14: $665 - 680.$
- 3. Rhie C, Chow W. Numerical study of the turbulent flow past an airfoil with trailing edge separation. *AIAA Journal* 1983; 21:1525 – 1532.
- 4. Ferziger J, Peric M. *Computational Methods for Fluid Dynamics*. Springer: Berlin, Heidelberg, 1997.
- 5. van Rijn L. The computation of the flow and turbulence field in dredged trenches. *Report S*-488-I, Delft Hydraulics Laboratory, Delft, The Netherlands, 1982.
- 6. Basara B, Younis B. Prediction of turbulent flows in dredged trenches. *Journal of Hydraulic Research* 1995; $33(6):813 - 824.$